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COMPIFER NETWORK RESEARCH 

Advanced Research Projects Agency 
Semiannual Technical Report 

December 31, 1972 

1.   INTRODUCTION 

This Semiannual Technical Report covers the period July 1, 1972 
through December 51, 1972. Our activities have ranged from network mea- 
surement studies to theoretical analysis of computer systems operation. 
Included in this research has been an extensive study by Mario Geria on 
design methods for store-and-forward computer-communication networks; 
this study has led to his successful completion oT the Ph.D. degree in 
Computer Science under the direction of Professor Leonard Kleinrock. The 
study considers many important problems in computer-communication network 
design.  For example, a method for obtaining the optimal assignment of flow 
within a network in which the capacity assignment has already been made is 
carefully studied; a rather efficient algorithm for locating this optimal 
flow has been found. The more difficult question of channel capacity 
assignment in a network where the flows have already been assigned is also 
considered and those cases leading to optimal solutions are classified; in 
the remaining cases, heuristic design procedures are described. The com- 
bined fl^w and channel capacity assignment problem is discussed and an 
iterative algorithm is developed which leads to a  class of suboptimal solu- 
tions.  In this iterative method, one finds that certain channels are 
assigned zero capacity and, as a consequence, the topology of the network 
varies as the algorithm proceeds.  This has led to considerable insight into 
topological design procedures, and it is this aspect of Gerla's thesis which 
we present in detail in Section 5  of this report.  That section is excerpted 
from Gerla's dissertation and, as a result, all of the numbers(section num- 
bers, equation numbers, ficoire numbers, etc.) have been left unaltered as 
they appeared in the dissertation (Ref. [9]).  The order of presentation 
is to give the abstract ot the thesis, a description of the combined capaci- 
ties and flow assignment problem with all the required notations, and then 
finally, a detailed chapter on our experience with the topological design 
using the ARPA Network as an example. Th^ complete dissertation is to appear 
as a UCLA Engineering Report in the ''Computer Systems Modeling and Analysis" 
series and will be available shortly. 

Our other significant accomplishments will not be described in this 
report, having devoted it to tie topological design mentioned above and 
detailed in Section 3.  Bolow, in Section 2, we give a list of nublications 
which have appeared during this period. 
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5. THE  DESIGN  OF STORE-AND-FORWARD CS/F) NETWORKS FOR COMPUTER 
COMMUNICATIONS. Ph.D. Disseitation by Mario Gerla 

ABSTRACT 

The emphasis of this research is on the development of 

mathematical programming tools for the design of S/F communication 

networks. 

An analytical model for the system is first presented and 

discussed. The design variables  (routing of messages, channe1 capaci- 

ties, topology, etc.) are then defined ani proper design criteria 

(delay, cost, thruput, etc.) are established and expressed in terms of 

the variables.  Next, various design problems are defined and investi- 

gated; the most significant of them are the following: 

1. Find the minimum cost channel capacity assignment, given 

the routing of the Messages and the maximum admissible 

delay T. 

2. Find the routing which minimizes the delay, given the 

channel capacities (and therefore the cost). 

3. Find the routing and capacities assignment which minimizes 

the cost, given the maximum admissible d^lay T. 

4. Find the topology, routing and capacities assignment which 

minimizes the cost, given the maximum admissible delay T. 

For these problems, either the exact solution is presented, or a good 

heuristic approach is proposed. 

Several examples and applications are discussed; most of them 

refer to the ARPA computer network, one "node" of which is operated by 

the Computer Science Department of UCLA. 
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Finally, the validity of the results and their sensitivity to 

changes in the model is discussed. 
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THE TOPOLOGICAL DESIGN OF S/F NETWORKS 

Below we provide a self-contained treatment of the topologi- 

design problem.  In particular, the sections from Chapter 5 show that 

the topological problem can be considered as a concave minimum cost 

flow problem, and outline an algorithm for the determination of local 

minima. The sections from Chapter 6 discuss various applications tc 

the ARPA Computer Network. 
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CHAPTER 5 

CAPACITIES AND FLOW ASSIGNMENT (CFA) 

5.1 Introduction 

In Chapters 3 and 4 we presented methods for the exact solu- 

tion of the capacities assignment (CA) and of the flow assignment (FA) 

problems separately.  In Chapters 5 and 6 we develop methods for the 

suboptimal solution of the simultaneous capacities and flow assignment 

(CFA) problem and of the topological problem.  In fact, there exist no 

efficient methods for the exact solution, mainly because of the diffi- 

culties presented by a nonconvex objective function (several local 

minima), by discrete capacity levels and, in the case of the topologi- 

cal design, by the combinatorial nature of the topological configura- 

tion considered as a variable. 

In the present chapter we discuss the problem of the simulta- 

neous assignment of capacities and flows (CFA problem). 

5.2 Problem Formulation 

Problem tS.l) 

given:  topology 

requirement matrix R 

cos\:-cap functions d. (C.) , V- i = 1, ... NA 

NA 
minimi-.e  D(C) = £ d.(C.) 
over C, f       i=l 1 ^^ 
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constraints: 

(a) f is a multicommodity (m.c.) flow satisfying the 

requirement matrix R 

(b) f < C 

NA    j-       -1* 

(O T(f.C)=i£ f. ^C_l7-J <Tn 

Where 

NN  : # of nodes 

NA : # of arcs 

D(C): total networl: cost, as a function of channel capacities 

C  A (C.jC , .,, C )  :  vector of channel capacities 

C.  : channel capacity in channel i [bits/sec] 

f  A (f ,f , ... f )  :  vector of channel rates 

R  A {r..}  :  requirement matrix 

r.. : average traffic requirement from node i to node; [bits/sec] 

l/u A average message length [bits/message] 

A*,  r. .  :  total 

T  : total average delay [sec/message] 

Y  A y A. r..  :  total thruput [message/sec] 

In a recent paper [FRAT 73], the delay T , instead of the cost D , 

was chosen as objective function of an analogous problem (and therefore 

a cost constraint, instead of a delay constraint, was cons'dered). 

Here we selected the cost D for the reason, already mentioned in 

Section 4.9, that the delay is a too sensitive performance criterion. 

*See [KLEI 64]. 
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Problem (5.1) is much more complex than the routing problem 

with fixed capacities. The objective D(C) is in general nonconvex, 

and the set defined by constraint T(f,C) < T    is also nonconvex, 
~ «v   ~"~   max 

as the function    T(f,C)    is nonconvex:      therefore the problem presents 

several  local minima.    Notice that the capacity constraint  (b)  is im- 

plied by the delay constraint (c)  and can therefore be disregarded. 

5.4 Linear Cost-Cap Functions 

At was shown in Section 3.3 that,   for the cose of linear 

cost-cap functions, a closed forr solution of the optimal capacities 

in terms of the flows is available.    In particular it was shown that: 

c. « f. +1 — , 

max 

D =   Z (d-f.   ♦ di0)  .      ^ 
1 max 

where : d.(C.) a d.C.   + d. 
11    =    11        10 

C.   :    optimal capacity on channel    i 

D    :    cost of the optimal capacities assignment. 

If we introduce such expressions in Problem (5.1), we obtain 

a new formulation; 

Problem (5.6) 

given:    topology 

requirement matrix    R 

Assuming that C is a continuous variable, the nonconvexity of T(f,C) 
can be easily proved by computing the qu^vatlc form of the second" 
partial derivatives anJ verifying that if; is not positive semidefinite. 
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(?/vr)2 
niiumize      D(f)  =^(d.f.  + d.n)  ♦ —^ 

over f 

constraint: 

YT 
max 

f is a m.c. flow satisfying R 

Problem (5.6) is a nonlinear, unconstrained m.c. flow problem. 

The following theorem holds: 

Theorem (5.7) 

The  function D(f)   : 

i2 

D(f) - E Cd.f. * di0) * -i- 
1 max 

is concave with respect to f £ F , where F is the set of 

feasible m.c.   flows.    The proof can be found in  [GERL 73]. 

A corollary to Theorem (5.7) establishes an important prop- 

erty of local minima for the  linear cost-cap case. 

Corollary  (5.17) 

Proof 

If    f    is  a local minimum of Problem  (5.6),  then    f    is  a 
* 

shortest route flow. 

As    D(f)    is  concave and the set of feasible flows    F    is 

convex,  lücal minima are extreme points of   F  ,  i.e., 

extremal  flows,  and therefore shortest route flows   [GERL 73] 

*A shortest route flow is a m.c.   flow whose routes are shortest 
routes computed for a well-defined assignment {£.} of lengths to the 
arcs   [HU 69]. 1 
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Figure 5.4.1  illustrates the nature of    D(f)   ;   for convenience of 

representation, we assume that the feasible set    F    is two-dimensional. 

Another important consequence of the concavity of D(f)    is that,  in 

the application of the FD method  [FRAT 73]  to Problem (5.6), the step 

size    X    of every flow deviation is equal to    1     (i.e.,  if we  find a 

downhill direction, we go aU the way down). 

These  and other properties will be further discussed in 

Section 5.6, where an FD algorithm for the solution of P.oblem (5.6) 

is  introduced. 

FiQurt 5.4.1.  Concavity of D (f ) 

FD refers to an algorithm known as the Flow Deviation Algorithm; 
See Section 5.6. 

* - - -  I          I I ' ,^=^ = -- =^^ ^--^r   ^^^=_ --I'       -     - 
7-"'   "     ~—   ---' 
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5.5 Concave Cost-Cap Functions 

In the concave cost-cap case it is not possible, in general, 

to express the cost of the optimal capacities assignment D explicitly 

in terms of the flow f ; therefore a formulation as nice as that in 

Problem (5.6) is not available. However, we can still show that D(f) 

is concave. 

Theorem (5.18) 

The cost l)(f) of the optimal capacities assignment under 

concave cost-cap functions and under the constraint T < T r —   max  * 

is  concave with respect to f . 

The proof can be found in  [GERL 73]. 

The properties that were established in Section 5.4 for the 

linear cost-cap cate (local minima = shortest route flows; optimal FD 

step size X    = 1   , etc.)   apply also to the concave cost-cap case. 

In Section 5.6 an algorithm for the solution of Problem (5.1) 

is  introduced. 

5.6 The FD Algorithm for the Solution of the Linear and Concave 

Cost-Cap Case 

We now intijduce an FD algorithm for the solution of Problem 

(5.1)     tor linear and concave cost-cap functions. 

Algorithm (5.21) 

0.     Let rt F    and let    C      be the optimal  assignment at 

f = f0    (i.e.,    D(C0)  = min D(C)   ,  s.t. T(f0,C}  < T      ) 

Let D0 = D(C0) 

let n = 0 
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1. Let    D      (f)    be the cost of the optimal cap assignment, 

as a function of the flow    f ,   for the problem linearized 

around    C - C    .    Let    f11      A shortest route flow corre- 

sponding to the metric ^n A [9n(n) (f)/af 1 .* 

2. Let    C        A optimal  assignment at  r        ,   and 

D    , I D(C"+1) n+l -      ' 

3. If (D - D  ) < 5 , where 6 is a proper positive 

tolerance, stop:  (f1^ , Cn )  is a loca.1. minimum. 

Otherwise, let n = n + 1 ; go to 1). 

The convergence of the algorithm is guaranteed by the fact 

that there are only a finite number of shortest route flows, and repe- 

titions of the same flow are not possible, as D  is strictly 

decreasing. 

The partial de iVatives used for the shortest route computa- 

tion have the following expression (see Problem (5.6)): 

k       x     ' max 

where    d^    is the slope of the cost-cap curve for the k      channel, 

evaluated at    C^ = CJ^  .    Notice that    £ ± 0 I  negative  loops  cannot 

exist.    Also notice that: 

lim      ilP = « 

V0^ 
n 

Notice that the metric    £.     varies at each iteration. k 
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which ire ans that whenever the flow (and therefore the capacity) of 

arc k is reduced to zero at the end of an FD iteration, then flow and 

capacity will remain zero for all subsequent iterations, as the 

incremental cost of restoring the flow (E £. )  is infinity. 

This property suggests a method for the design of the 

topology: we can start from a topology which is highly connected, and 

eliminate arcs with the FD method, until a suboptimal configuration is 

obtained. 

The FD method leads to a local minimum, which depends on the 

choice of the starting flow f .  In order to find several local 

minima, a mechanism that produces a large variety of starting flows is 

required. We propose the following randomized procedure for the 

generation of starting flows: 

1. Assign initial equivalent lengths  {JL } to the arcs at 

random. 

2. Compute the shortest route flow f  according to the 

metric  {£. ) . 
i 

The initial  random choice of the lengths guarantees the ran- 

domness of the starting flows,  thus providing a method for finding 

several   local minima.      After a convenient number of iterations, the 

In the case of concave link  costs    d^CC.)    such that    d'(O)  = ^ ^ 

^e.g., power law function),  we have that, when  f.-> 0   , d,   -► <» .     It 

is evident,   from Equation  (5.22),  that this effect strengthens the 

tendency    Ä.   ■> iw    for    f.   -► 0  . 
* 
Another procedure for the exploration of local minima is  found in Yaged 
[YAGE 71]   and can be briefly summarized as  follows.    Once a local mini- 

mum    corresponding to a given vector    H    of equivalent  lengths    is 
obtained,  a new vector    i'    is generated by artificially perturbing 

■'..-.    ..-.      ^ .    ; ^—^- ^^^- 
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global minimuni is  chosen as the minimum of the  local minima.    This pro- 

vides  a "suboptimal" solution 

We chose the randomized procedure,  rather than more  ad hoc 

techniques   (like the one proposed by Yaged)»     because we believe that  it 

guarantees  a more uniform and complete sampling of the solution space. 

Theoretically,  all  the  local minima will be explored,   if an infinite 

number of starting solutions  is generated.    We  feel that  ad hoc tech- 

niques  tend to determine  locals which are  clustered in a relatively 

limited region. 

A block  diagram of the suboptimal procedure can be found in 

Figure 5.6.1,  and a graphical  interpretation is  given in Figure 5.6.2. 

5.8 Channel Costs 

The set of channel  capacities  available  for ARPA is  discrete: 

Table 5.8.1  contains the  list  of capacity options  and corresponding 

costs  considered in the present  application  [KLEI  70]. 

In order to apply continuous  techniques, we approximate the 

discrete cost-cap curves with  continuous, power law curves: 

a. 
d.(C.)   = d.C.1  ♦ d.n (5.30) 

i     i i   i lO 

Other concave approximations could be considered [KLEI 70], howevei, 

the power law curves are particularly convenient for the property that 

local min are global min in ehe solution of the capacity assignment 

problem [KLHI 70j. 

some components of I  .  Let f be the shortest flow associated to V 
and apply the FD method with "f1 as a starting flow: a new local 
minimum is, in general, obtained. The procedure is applied several 
tiroes, and several locals are found. 
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k«0 

ASSIGN LENGTHS £ 

AT RANDOM 

COMPUTE SH. ROUTE 
FLOW 1° 

SELECT THE MINIMUM OF 
THE LOCAL MINIMA 

OF 

  

Figurt 5.6.1.   Block Diagram of the Rancom Procedure for the 
Determination of • Suboptimal Solution. 

140 
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f0 : STARTING FLOW 
V  : LOCAL.MINIMUM 

Figure 5.6.2.  Illustration of ihe FD Method. 
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Discrete channel costs, as from Table 5.8.1, and power law 

TABLE 5.8.1 

CHANNEL CAPACITIES AND CORRESPONDING 
COSTS USED IN THE OPTIMIZATION 

Capacity 
[kbits/sec] 

Termination Cost 
[$/month] 

Line Cost 
[l/month/mile] 

9.6 650 .40 • 

19.2  (2 x 9.6)* 1300 .80 

19.2 850 2.50 

50   * 850 5.00 

100      (2 x 50)* 1700 10.00 

230.4 1350 30.00 

Note: The total cost per month of a channel is given by: 

total cost ~ termination cost ♦ (line cost) x 

(length in miles) 

* 
Options obtained by using lower capacities in parallel. 

approximations for six different line lengths, are plotted in Figures 

5.8.2a and 5.8.2b. We do not discuss the details of the determination 

of the parameters in Equation (5.30), but merely mention that, the terms 

d.0 were made zero and the other parameters were chosen so that the 

continuous curves would interpolate the discrete costs. 

The difference between continuous and discrete costs, in 

correspondence to the discrete capacity val^e^, is relatively small, if 

148 
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we exclude the case C = 230 [kbits/sec] for line lengths >^ 1000 miles, 

in which the discrete cost is about 20% higher than the continuous cost: 

in any case we can very reasonably assume that the optimal continuous 

solution of uie CFA problem is a lower bound on any discrete solution. 

Notice that the exponent a varies with the line length: for 

line lengths between 0 and 750 miles, a varies between 0.2 and 1,00; 

for lengths >^ 750 miles the value a = 1.00 is chosen. We found 

experimentally that in the ARPA Network, due to the geographical loca- 

tion of the nodes, 70% of the total cost is represented, on the average, 

by arcs with length j> 300 miles, i.e., arcs for which a > 0.8. We can 

expect, therefore, that the solutions obtained with the above power law 

approximation will exhibit properties which are similar to those of the 

solutions obtained considering power law curves with uniform 

a = 0.8 T 0.9. 

In order to study the behavior of the solutions for different 

economies of scale [YAGE 71]» we also consider applications with uniform 

a power law curves: 

W^ (5-3« 

where 

C0 = 50 [kbits/sec] 

D.n = cost of 50 kb option for arc i . 

IT 

This case is of little practical interest for our applications anyway, 
because we found experimentally that, with the valiiei of requirement 
currently used. No good design vould assign such  large capacities to 
such  long links. 

151 
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CHAPTER 6 

* OFOLOGICAL DESIGN 

6*1    Introduction 

In this chapter we study the problem of minimizing the cost of 

a S/F communication network, when topology, routing of the flows and 

capacity assignment are all considered to be variable. 

The exact solution of such a problem for large networks is 

computationally prohibitive even with the largest computers available 

today; our intention, therefore, is to develop heuristic algorithms for 

the determination of good, suboptimal solutions. 

In Section 6.2 we give the formulation of the pi^blem. 

In Section 6.3 we review the existing techniques for the 

topological design and introduce the Concave Branch Elimination (CBE) 

method as an alternative to exerting techniques, for the particular case 

of networks with a concave objective function. 

In Section 6.4 the CBE method is applied to the linear and 

concave cost-cap case, and several examples are presented. 

In Section 6.5 we discuss an efficient technique for preserving 

the 2-connectivity of the solutions. 

In Section 6.6 the CBE method is applied to the discrete 

capacities problem; some additional heuristics are discussed and several 

examples are presented. 
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In Section 6.9 we give some concluding remarks and an evalua- 

tion of the CBE method as compared to other topological approaches. 

6,2    The Topological Problem 

Problem (6.1) 

given: requirement matrix R 

cost-cap functions D. ■ d.(C.) , V-i 

minimize:  D(A, C) = ^ d.(C.) 
over A^.f ick   1    1 

where A is the set of arcs which corresponds to 

a specific topology 

s.t.; (a) f is a m.c. flow satisfying the requirement 

matrix R 

(b) f < C 

1 ieA  L i   iJ 

(d) The set A must correspond to a 2-connected 

topology [FRIS 67J 

Here it is assumed that A is a subset of the set of arcs correspona- 
ing to a fully connected network, in which multiple links and self 
loops are excluded. 
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6.3    Review of Topological Design Methods for Networks. 
Introduction of the Concave Branch Elimination (CBE) Method. 

As we already mentioned in Chapter 5, the topology is a 

variable of combinatorial type and the exact solution of the topological 

problem requires the exploration of a large number of topologies (in 

the limit all possible combinations); as a consequence, the amount of 

computation increases exponentially with the number of nodes. We 

believe that the exact solution is computationally prohibitive already 

for networks on the order of ten nodes, and that only good heuristic 

solutions can be found in a reasonable computational time for networks 

of larger size. 

Several examples of heuristic solutions to large topological 

problems can be found in the literature. In [LIN 65], Lin describes a 

suboptimal algorithm for the solution of the Traveling Salesman Problem; 

the algorithm is based on the random generation of several haroiltonian 

circuits, which are successively improved by means of topological trans» 

formations, involving only three arcs at a time, until a local minimum 

is obtained. The minimum cf the local minima is the heuristic solution 

to the problem. Lin applied the algorithm to a variety of examples, for 

which the exact solution was known, and found the exact solution for all 

of them! 

A similar approach is used by Frank et al. for the determina- 

tion of the minimum cost topology of a pipeline network connecting gas 

fields to separation plants in the Gulf of Mexico [FRAN 69]. The net- 

work is assuir^d to have a tree structure, and the algorithm consists of 

the random g^reration of several different trees, whose cost is 
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successively reduced by topological transformations, in which arcs are 

added and deleted one at a time. A very efficient dynamic programming 

algorithm finds the optimal capacities which yield the minimum cost for 

the new topology obtained after each transformation. 

Frank et al. applied the same dynamic programming approach to 

the design of centralized computer networks [FRAN 71A]. 

A heuristic approach to the design of minimum cost survivable 

networks is described by Steiglitz et al. in [STEI 69]. The method con- 

sists of a starting routine, which generates random feasible topologies, 

and of an optimizing routine, which improves the cost of the starting 

topology by means of local transformations, called X-changes. An 

X-change corresponds to the deletion of two arcs, say (i, m) and (j, Ä), 

and the introduction of two new arcs (i, £) and (j, m). The  practicality 

of the algorithm is based on a very efficient technique for testing the 

feasibility of the new topology after each X-change [KLET 69]. 

A heuristic method for the design of minimum cost, 2-connected 

computer networks is proposed by Frank et al. in [FRAN 70]. The approach 

is similar to that described in [STEI 69], and applies the same tech- 

niques for random generation of topologies and topological transforma- 

tions. In addition, a very efficient heuristic routing algorithm is 

developed. 

Common features of the above heuristics are: random generation 

of several starting topologies (which ensures wide sampling o^ the solu- 

tion space); availability of fast ar.d efficient techniques for the 

evaluation of each topology. 

Less sophisticated heuristics do not apply the randomization 
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of the starting topology: to such a category belong several techniques 

recently proposed for the design of minimum cost centralized computer 

networks [MART 67, ESAU 66, WHIT 72B]. Typically, the suboptimal con- 

figuration is obtained after the repeated application of simple topologi- 

cal operations (e.g., insertion, deletion or replacement of a branch, 

etc.). An interesting evaluation of some of the methods, as compared to 

the optimal solution, is presented by Chandy and Rüssel in [CHAN 72B]. 

We might classify all the above methods as branch-exchange, or 

branch-insertion methods: branches are systematicallytexchanged or 

inserted, following some well defined criteria. 

In the special case of a multicommodity flow network, in which 

the objective to minimize is a concave funnion of the flows, another 

heuristic method can be proposed as an alternative (or as a complement) 

to the branch-exchange methods. The method is based on the property 

that the flow patterns, which are local minima of the CFA problem, 

typically concentrate the flows on some links, and leave some other 

links with zero flow (see Chapter 5): the initial topological con- 

figuration is therefore automatically reduced in the process of finding 

local minima. We will refer to such topological reduction, induced by 

concavity, as Concave Branch Elminiation (CBF.). 

The CBE method consists of two routines: the random starting 

routine, which generates several random starting topologies and, for 

each topology, several random starting flow configurations; tne 

optimizing routine, which improves a given starting topology with pro- 

gressive "concave elimination" of expensive arcs, until a local minimum 

is reached. 
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The random starting routine must generate initial topologies 

which are likely to contain the optimal topology as a subgraph, and, at 

the same time, that can be conveniently processed by tie optimizing 

routine. In the choice of such initial topologies, the human interaction 

can be very useful; in fac . -n many examples introduced later in the 

chapter, the initial topologies were generated by hand. A method for 

the automatic generation of initial topologies is outlined in Section 

6.8. 

The idea of using concave branch elimination for the topologi- 

cal design of networks, with concave link costs and multicommodity flow 

requirement, is not new. Yaged in [YAGE 71] applies such an approach to 

the determination of minimum cost topologies for a large telephone net- 

work, where the total cost is the sum of the concave link costs; several 

minimum cost topologies (corresponding to different link costs) are 

obtained, starting from a common, highly connected, planar topology 

(which is implicitly assumed to contain all minimum cost topologies as 

subgraphs). 

The CBE method here proposed is a generalization of Yaged1s 

technique: it applies to nonseparable objective functions and guarantees 

a wider sampling of the solution space, through the random generation of 

initial topologies and initial flow assignments. 

The CBE method is, therefore, applicable to tho topological 

design of S/F networks, as we showed in Chapter 5 that the CFA problem 

leads to the minimization of a nonseparable concave objective function. 
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6.4    Concave Cost-Cap Case Without the 2-Connectivity Constraint 

In the present section we assume that the cost-cap functions 

are linear or concave; we also relax the 2-connectivity constraint. 

With the above assumptions. Problem (6.1) can be regarded as a 

capacity and flow assignment problem (see Section 5.4) in which tie 

initial topology is fully connected: the CBE method, therefore, reduces 

to the FD method. In some applications (typically, the applications 

with moderate concavity of the cost-cap functions) the fully connected 

starting net produces very satisfactory results. In some other applica- 

tions (pronounced concavity of the cost-cap functions and, in the limit, 

presence of start up costs), a fully connected start leads typically to 

locals, which are very far from optimum. For the latter applications, 

the CBE method is greatly improved by selecting initial topologies, 

which are likely to contain the optimal topology and which exclude, on 

the other hand, obviously bad links. For networks on the order of 20 

to 50 nodes, a large sample of good initial topologies can be generated 

by hand. For larger networks, the generation can be done with tha aid 

of the computer [GERL 73]. 

The CBE method has been applied to the design of topologies 

connecting 26 ARPA sites (see Figure 6.4.1). Several concave channel 

costs have been considered (a fitted; uniform a = 1.0, 0.8, 0.6, 0.5, 

* 
0.1),  The traffic requirement r was assumed uniform (in some cases, 

r = 1.0 [kbits/sec]; in some others r = 0.74 [kbits/sec]). A maximum 

delay T   = .200 was required. For each value of a several initial 

See Section 5.8 for the analytical expression of the channel costs. 
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topologies were considered; for notational convenience we classify them 

in the following way: 

- fully connected (325 arcs) 

- highly connected (above AC  arcs) 

- medium connected (30-40 arcs) 

- low connected (26-29 arcs) 

- trees (25 arcs) 

Notice that the arcs are nondirected (i.e., each arc corresponds to two 

directed arcs, with opposite directions, and is physically implemented 

with a fu*1 duplex channel). 

A summary of the results is shown in Tables 6.4.2a and 6.4.2b. 

The results are subdivided into six classes, each class corresponding 

to a different value of a . For each CBE application we give: 

- degree of connection: it defines the type of initial 

topology considered (e.g., fully connected, minimum spanning 

* 
tree, shortest hamiltonian, etc.)» 

- NA0: number of arcs of initial topology. 

- NLOC: number of local minima explored. 

- D., NA : cost ($/mo^thl and number of arcs of the best 

local minimum. 

- D2, NA2: cost ($/month) and number of arcs o^ the second 

best local r.inimum. 

An accurate analysis of the results permits us to establish 

interesting properties of the suboptimal solutions. Some of these 

The minimum spanning tree was computed with link lengths proportional 
to the geographical distances. 
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TABU: 6.4.2.1 

RESULTS OF T110 CBE METHOD, WITH CONCAVE COST CURVES 
AND NO 2-CONNECTIVITY CONSTRAINT 

a fitted,  r = =  1.0   [kt )its/sec x node pair] 

Degree of 
connection NA0 NLOC Dl NA D2 

NA2 

fully conn. 325 30 82,583 55 82,961 52 

highly conn. 53 30 81,202 40 81,979 39 

highly conn. '       52 30 81,988 40 82,077 42 

med.   conn. 35 30 82,606 30 82,743 30 

med.   conn. 33 30 84,719 30 84,721 30 

1 sh. hamilt. 26 30 94,977 26 94,977 26 

mir. sp, tree 25 1 91,775 25 - 

tree 2 25 1 95,456 25 - 

a = 1.0, r = 0.74 [kbits/sec x node pair] 

Degree of 
connection 

NA ™o NLOC Dl HAl ■ i 

2 
NA2 

fully conn. o25 30 62,459 52 64,079 52 

highly conn. 40 30 62,029 39 62,062 39 

a = C ).8,   r = 0.74 [kbits/sec x node pair] 

Degree of 
connection NA0 NLOC 

D' 
NA D2 

NA2 

i 

fully conn. 325 30 j 65,439 34 65,443 39 

highly conn. 40 30 j 62,751 34 62,922 35 

min.  sp.  tree 25 1 | 65,073 25 - 
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TABLE 6.4.2b 

RESULTS OF THE CBE METHOD, WITH CONCAVE COST CURVES 
AND NO 2-CONNi'.CriVITY CONSTRAINT 

a = 0.6, r = = 1.0 [kbits/sec x node pair] 

Degree of 
connection 

NA0 NLCC Dl 
NAj D2 NA. 

i 

fully conn. 325 50 71,233 27 * 72,325 27 

highly conn. 40 30 65,834 27 70,291 31 

med. conn. 33 30 68,780 28 68,821 27 

min. sp. tree 25 1 66,207 25 - 

tree 2 25 1 65,158 25 - 

a = 0.5, r • -- 1.0 [kbits/sec x node pair] 

Degree of 
connection 

NA0 NLOC Di 
NA D2 

NA2 

highly conn. 53 50 
i 

64,421 26 65,012 27 

highly conn. 40 
■ -  .. - - 

30 60,712 26 63,117 28 

med. conn. 32 50 63,582 27 67,088 28 

min. sp. tree 25 1 60,505 25 - 

tree 2 25 1 39,719 25 - 

a = 0 .1, r = 0.74 [kbits/sec x node pair] 

Degree of 
connection 

NA0 NLOC Di 
NA1 D2 NA, 

fully conn. 325 30 64,100 25 65,575 25 

I highly conn. 40 30 48,040 25 49,821 25 

med. conn. 33 30 47,711 25 49,476 25 

min. sp. tree 25 1 42,601 25 - 

tree 2 25 1 43,003 25 - 
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properties were already pointed out in Chapter 5. In addition, some 

new properties, which relate the topological characteristics of the 

solutions to the input parameters, were observed. The properties can 

be summarized as follows: 

(a) When a decreases (i.e., the economy of scale increases), 

the number of arcs of the suboptimal solution decreases. In fact, for 

a = 1.0 and a fitted, good topologies have a number of arcs varying 

from 30 to 60; topologies with higher or lower numbers of arcs exhibit 

poor performance (as in the case of the two trees or ithe shortest 

hamiltonian circuit, for a fitted). For a = 0.8 , the optimal number 

of arcs seems to be between 40 and 30. For a £ 0.6, all of the best 

solutions that we found had a tree structure. 

(b) When a decreases, the range of variation of NA (final 

number of arcs) for the good suboptimal topologies becomes smaller. We 

already mertioned that, for a = 1 , many good solutions have NA between 

60 and 30. For a = 0.1 , the good topologies all have a tree structure 

(NA = 25). 

(c) When a decreases, the range of variation of the costs 

within each run becomes larger (we already observed this property in 

Chapter 5). Considering the distribution of the costs of the local 

minima obtained from a given initial topology, we noticed that, for 

a fitted and a = 1.0 , more than 30% of the costs were within 2-3% 

of the best cost for that run. For a = 0.6 and a = 0.5 , only 10-20% 

of the costs were within 10% of the best. The spread of the distribu- 

tion of the costs was increasing with the degree of connection of the 

initial topology, and was maximum for the fully connected topology. 
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(d) When a decreases, the range of variation of the costs 

^ obtained from different runs (i.e., using different initial topologies) 

becomes larger. For 01 fitted, all the iritial topologies with 

NA0 :> 35 produced solutions in a 2% range. 4V/ a = 0.6 and 0.5 , the 

* fully connected start produced poor results; other initial topologies, 

with NA0 between 50 and 25, gave solutions in a 5-10% range. For 

a = 0.1 , initial topologies with NA between 30 and 40 produce solu- 

tions with costs which are 15% higher than ne cost of the minimum 

spanning tree (which is the exact solution for a -► P). 

Properties (a) and (b) can be attributed to the fact that small 

a corresponds to strong economy of scale and favors topologies with 

large capacities concentrated in a few arcs. Properties (c) and (d) are 

a consequence of the fact (already mentioned in Chapter 5) that, when 

a decreases, the number of local minima increases and the costs of such 

local minima are widely diversified (sea Figure 6.4.2C). 

This fact also explains the pevformance of different initial 

topologies for different values of a . Highly connected (h.c.) 

topologies are more likely to contain the optimal topology, as a local 

minimum, than low connected (I.e.) topologies; on the other hand, for 

the same value of a , h.c. topologies contain a much larger number of 

local minima (we conjecture that such a number increases exponentially 

with NA»). For a = 0.8-1.0 , h.c. topologies offer a good probability 

of obtaining, if not the optimal solution, at least very good solutions, 

because the number of local minima is relatively small, end the values 

of the minima are close; I.e. topologies, on the other hand, restrict 

arbitrarily the set of solutions to a region which might be far from 
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D - CONST. 

A)     a =* 1. (LOW CURVATURE OF & - CONST. LEVEL CURVES): 
2 LOCAL MINIMA, WITH APPROXIMATELY SAME VALUE OF D 

D - CONST. 

B)      SMALL a (HIGH CURVATURE OF D - CONST LEVEL CURVES): 
4 LOCAL MINIMA, WITH VERY DIFFERENT VALUES OF D. 

Figure 0.4. 2C* Geometric Interpretation of the Dependence of Number and 
Distribution of Local Minima from or. 
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optimum. For small a , the number of local minima is so large (for 

• a -► 0 , all extreme flows are stationary flows), and their values are 

so diversified that h.c. topologies lead usually to bad locals; care- 

fully chosen I.e. topologies can perform better, as they eliminate many 

bad locals. 

The above considerations indicate that the CBE method is very 

useful for applications with a ■ 0.8-1.0 : the choice of the initial 

topology is not very critic«"i, and the exploration of a few local minima 

gives, in general, already good solutions. In the pmge of a = 0.5-0.8, 

the CBE method can still be applied, but a careful choice of the initial 

topology (see [GERL 73])   and the exploration of a large number of 

locals are advisable. For a < 0.5 , the CBE method seems to be of 

little use. This does not mean that we cannot find good solutions for 

small a ; in fact, as we showed, the good solutions have a tree 

structure and therefore the topological problem corresponds to the 

problem of finding the minimum cost tree that satisfies T < T — max 

Notice that, for a tree, the routing assignment is unique, therefore, 

jiven the tree, we can compute immediately f , C and D(C), The 

efficiency with which we can evaluate D(C) for new topologies suggests 

the use of a branch X-change method for the search of the minimum cost 

tree [STEI 69, FRAN 70]. As an alternative approach, one could deter- 

mine several local minima with the CBE method, and then improve them 

with branch X-change techniques. The simple inspection of two solutions 

obtained from a highly connected topology, with a = 0.1 (see Figures 

6.4.3 and 6.4.4) suggests that a few branch X-changes could considerably 

reduce the cost. 
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Until n^s we have discussed the dependence of the results upon 

the characteristics of the cost function D(f) . We expect that the 

resulfs should depend also on the degree of "balance" of the traffic 

requirement; on the total thruput; on the number of nodes NN; on their 

geographical distribution, etc.  A rigorous investigation of such depen- 

dence would require the study of a large number of different cases. 

Here we limit ourselves to some simple considera:ions. 

We can intuitively expect that a highly unbalanced requirement 

would drive the optimal topology to a tree:  such expectation Is moti- 

vated by the fact that, for multiterminal, centralized networks (i.e., 

v. . = 0 T i, j, except for i = C,  or j = C, where C is the 

"central" node), the optimal topology is a tree [ZANG 68]. 

Also, we would expect that a uniform geographical distribution 

of the nodes tends to lew  off the differences in cost between the 

various topologies obtained with the CBH method. Consider, as an ex- 

ample, the two very different node distributions shown in Figure 6.4.5 

(a) and (b). Suppose that we want to determine the optimal topologies 

for both distributions, using the CBK method and assuming concave link 

costs, with a ^ 0  (sec Equation (5.31)).  Let us also assume that, as 

initial topologies for the CBK method, the two very reasonable planar 

topologies of Figure 6.4.5 (a) and (b) are used. The well known exact 

solutions are the minimal spanning trees.  Such minimal trees, as well 

as many other trees, can be generated from the initial topologies bv 

the CBH method.  Notice, however, that any spanning tree for topology 

(a) is minimal; on the other hand, notice that, for topology (b), mf 

Here we assume that the link costs are related to the geographical 
lengths.  More generally, the regularity of the cost matrix should be 
considered. 
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(a)   UNIFORM GEOGRAPHICAL DISTRIBUTION OF THE NODES 

(b)   IRREGULAR NODE LOCATION 

O- 

6 
—? 

6 
(c)   MINIMUM SPANNING TREE FOR TOPOLOGY ib) 

(d)   ANOTHER SPANNING TREE FOR TOPOLOGY (b) 

Figure 6.4.5.   Impact of Geographical Node Location on the Typological Design. 
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spanning trees (see, for example, the tree in Figure 6.4.5 (a)) have a 

much higher cost than the minimal spanning tree (c). We conclude that 

the application of the CBE method, with a -♦* 0 , is successful for 

topology (a) and disastrous for (b). This example is clearly an extreme 

case, but it motivates our expectation that the CBE method can handle 

uniform node distributions better. These considerations might also help 

to understand why Yaged, having a fairly uniform node distribution (see 

* 
[YAGE 7l])» obtained much bitter results for very small o  , than we 

did with the 26 ARPA sites, which are more irregularly distributed. 

Finally, as an example of the relation between optimal topo- 

logical structure and thruput, we can consider the case of link costs 

represented by the contribution of a set up cost plus a cost which is 

linearly increasing with the capacity. For small thruput, the set up 

cost is predominant, and the optimal solutions are trees. For large 

thruput, the variable cost is predominant, and the optimal solutions 

are highly connected topologies. 

6.5    The 2-Connectivity Constraint 

A very important requirement for a communications network is 

the survivability to failures: the network must remain operational 

(i.e., nodes must be able to communicate with each  vher) even after 

the failure of n elements (nodes or arcs). It can be shown [FRIS 67] 

that a network, in order to survive to n - 1 arbitrary failures, must 

* 
Yaged claims, in [YAGE 71], that, starting from a highly connected 
planar topology and applying concave branch elimination techniques, 
he could generate, in the case a -* 0 , the exact solution, i.e., the 
minimum spanning tree. 

195 



Section 3 42 

provide n independent paths (i.e., with no common intermediate nodes 

or arcs) between each pair of nodes; ^he network is then referred to as 

n-connected. 

Usually, computer networks are considered to be sufficiently 

reliable jf they survive one simple failure at a time [ROBE 70]; for 

that reason, only 2-connectivity is required in the formulation of 

Problem (6.1).  However, many of the considerations that follow can be 

applied to the general n-connectivity case. 

Very efficient techniques were recently develpped for the 

analysis of the connectivity in communicatior. networks [FRIS 67, 

KLET 69]. As for the design of minimum cost, n-connected networks, 

exact solutions are available only in the very special case of link 

costs which are merely set up costs and which are identical for all the 

links. A heuristic approach to the solution of the case of set up costs 

which are different from link to link has been discussed by Steiglitz 

et al. [STEI 69]; the approach utilizes the branch X-change technique, 

in which only X-changes that preserve n-connectivity and reduce the cost 

are accepted. The case of communication networks with link costs which 

depend on the capacity was considered by Frank et ai. in [FRAN 70], in 

relation to the design of a 2-connected computer network; the method 

applies the branch X-change technique, in which a branch X-change is 

accepted only if it preserves 2-connectivity and improves the 

A more complete definition of survivability should include, in addition 
to 2-connectivity, the maximum tolerable degradation in performance 
(e.g., thruput or delay) when an element fails. However, the test of 
such degradation at each step of the design would represent too severe 
an overhead; therefore, it is more convenient to verify it a posteriori. 
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performance. The method is very similar to that of Steiglitz et al. in 

^ [STEI 69]; notice, however, that the evaluation of the cost after each 

X-change, while it is trivial for set up costs, is extremely difficult 

for costs which vary with the capacities, as it involves an optimal 

* assignment of routing and capacities. 

If the CBE method is applied to the design of minimum cost, 

2-connected networks, the obvious way to obtain 2-connected solutions is 

to start from a 2-connected topology and to test 2-connectivity after 

* 
each iteration; the algorithm terminates when the t^st fails or when no 

improvement is obtained. In both cases, we retain the result of the 

iteration before the last. 

The presence of the 2-connectivity requirement increases the 

cost of the optiiril solution (if the optimal, unconstrained solution is 

not 2-connected). This effect can be seen in Tables 6.5.1 (a), (b) and 

(c), where the results with and without 2-connectivity test, obtained 

fro.Ti various initial topologies, are compared. 

Notice that, for a fitted, the degradation is not too severe 

(the constrained minimum for each run is within 2% of the unconstrained 

one); for a = 0.5 , on the other hand, the degradation is dramatic 

(the difference between constrained and unconstrained minimuiii is on the 

order of 20-30%). This is no surprise, as the good topologies  for 

The 2-connectivity test can be implemented with a labeling algorithm, 
2      3 

which requires from (NN) to (NN) elementary operations, depending on 
the degree of connection of the topology under consideration. The over- 
head due to the introduction of such a test is not too severe, if we 

consider that one shortest route computation alone requires (NN) 
operations. 
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TABLE 6.5.1a 

COMPARISON OF THE CB.F RESULTS 
WITH AND WITHOUT 2-CONNECTIVITY TEST 

ot fitted, r = 1.0 [kb/sec x node pair] 

Example 1:  fully cornected initial topology (NA0 = 325), 

number of local minima NLOC = 30 

No 2-connectivity test 2-connectivity test present 

D[K$] 
number of 
solutions 

82 - 84 2 

84 - 86 4 

86 - 88 6 

88 - 90 7 

90 - 92 5 

> 92 6 

D[K$] 
number of 
solutions 

82 - 84 1 

84 - 86 3 

86 - 88 6 

88 - 90 6 

90 - 92 6 

> 92 3 

Example 2: highly connecced initial topology (NA ■ 53), 

number of local minima NLOC = 50 

No 2-connectivity test 2-connectivity test present 

D[K$] 
number of 
solutions 

82 - 84 IS 

84 - 86 20 

86 - 88 5 
88 - 90 S 

90 - 92 5 
> 92 0 

D[K$] 
number of 
solutions 

82 - 84 0 

84 - 86 11 

86 - 88 4 

88 - 90 3 

90 - 92 2 

> 92 30   | 
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TABLE 6.5.1b 

COMPARISON OF THE CBE RESULTS 
WITH AND WITHOUT 2-CONNECTIVITY TEST 

'x fitted, r s i.Q [kb/sec/node x pair] 

Example 3: medium connected initial topology (NAn « 32), 

number of local minima NLOC = 50 

No 2-connectivity test 2-connectivity test present 

D[K$] 
number cf 
solutions 

88 - 90 50 

90 - 92 0 

92 - 94 0 

94 - 96 0 

96 - 98 0 

> 98 0 

D[K$] 
number of 
solutions 

88 - 90 2 

90 - 92 12 

92 - 94 6 

94 - 96 16 

96 - 98 10 

> 98 
 i 

4 
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TABLE 6.5.1c 

COMPARISON OF THE CBE RESULTS 
WITH AND WITHOUT 2-CONNECTIVITY TEST 

ot = 0.5, r = 1.0 [kb/sec x no^e pair] 

Example 1: highly connected initial topology (NA0 = 53), 

number of local minima NLOC ■ SO 

No 2-connectivity test 2-connectivity test present 

D[K$] 
number of 
solutions 

64 - 68 7 

68 - 11 3 

72 - 76 16 

76 - 80 12 

80 - 84 2 

'  > 84 0 

D[K$] 
number of 
solutions 

64 - 68 0 

68 - 72 0 

72 - 76 0 

76 - 80 0 

80 - 84 1 

> 84 49 

Example 2: medium connected initial topology (NA = 32), 

number of local minima NLOC = 50 

No 2-connectivity test 2-connectivity test present 

D[K$] 
number of 
solutions 

62 - 66 1 

66 - 70 30 

70 - 74 19 

74 - 78 0 

78 - 82 0 

> 82 0 

D[K$] 
number of 
solutions 

62 - 66 0 

66 - 70 0   1 

70 - 74 16   ! 

74 - 78 34 

78 - 82 o 
> 82 0 
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a fitted tend to be highly connected,   thus including a fairly large 

number of 2-connected configuration;  for    a = 0.5  , on the other hand, 

the good topologies tend to have a tree structure,   and therefore 

2-connectivity and low cost are contradictory design criteria.     In 

general,   for small    a >   low cost 2-connected configurations are diffi- 

cult to locate with the CBE method. 

The above results suggest that,  in general,  the CBE method 

plus 2-connectivity test  is a good approach for the applications with 

moderate economy of scale   (a = 0.8 -  1.0 in our case).     For applications 

with medium economy of scale  (a = 0.6),  the CBE method should be  com- 

bined with a branch  insertion routine  (see Section 6.8),  which preserves 

2-connectivity by  introducing a proper set of arcs when^/er rhe topology, 

during the CBE optimization, becomes monocom.-cted.     For applications 

with very strong economy of scale  (see,  as a limiting case,   ch-   problem 

considered by Steiglitz et al.   in   [STEI 69]), branch X-change seems to 

be  the only reasonable  approach. 

In order to be  reliable,   a 2-connected network must  also be 

able to contain within acceptable limits the degradation in performance 

following a failure.     For instance,  if the    inks have no set up costs, 

any monoconnected solution can be made 2-connected by introducing appro- 

priate  links with  infinitesimal  capacity, without virtually increasing 

the cost:    such a solution would obviously not meet the reliability re- 

quirements.    The solutions obtained with the CBE method must be, there- 

fore,  a posteriori   verified,  to make sure that the;r reliability ib  ac- 

ceptable.    This  additional   reliability test,  however,  is not too critical 

for CBE solutions,   for the  following reasons: 
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- the  final  flow configuration   is an extremal   flow, therefore 

the capacity in each  arc  is >   min  {r..I   r..   > 0}   :   this 
— ij '     ij 

excludes pathological cases with infinitesimal  capacities 

assigned to some  arcs. 

- the CBE method tends to eliminate arcs with small capacity, 

as their marginal cost is very high.   Therefore, small, 

capacitier are not likely to be found in the final 

configuration, 

- typically, the CBE method generates a large set of good 

solutions:    it is very likely  that some of them will meet the 

reliability requirement. 

6.6 Discrete Cost-Cap Case 

If the discrete channel costs can be reasonably approximated by 

continuous,  concave costs    D.(C.), such that    D.(0)  = 0    (i.e., no set 

up cost), then the topology (or, better,  several good topologies)  can 

be designed with the CBE method using the  continuous approximation; from 

each of tYe continuous solutions a discrete capacity assignment can be 

derived with the techniques described in Chapter 5. 

This  continuous-discrete approach was applied to the topologi- 

cal design of a network connecting the 26  ARPA sites shown in Figure 

6.4.1.    The discrete costs are g.'en in Table 5.8.1; as  a continuous, 

concave approximation to such costs, we used the   a    fitted, power law 

curves described in Section 5.8.    A uniform traffic 

r * 1.0  [kb/sec x node pair] is required.    The delay   T       «0.200  [sec] 
max 

is prescribed, as maximum admissible average delay. 
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In order to obtain 2-connected solutions, the CBE method with 

2-connectivity test was applied. The degradation produced by the test 

was nol too severe for a fitted (as shown in Section 6.5). 

For the assignment of discrete capacities, the following 

approach was used: 

- let f be the flow of the continuous solution 

- let C be the minimum cost discrete capacities assignment 

such that C. ^ f. , V- i (minimum fit assignment) 

- with assignment C , let p be the maximum traffic level 

such that T < T 
— max 

C is the discrete capacities assignment and p is the traffic level 

associated with ii; if    0 >_ I  ,  the solution is feasible. Experimen- 

tally, we found that with T   = .200 sec most of the minimum fit 

assignments satisfy p > 1. 

In order to ensure a wide sampling of the solution space, many 

different initial topologies have been tried. About 30 different 

entries were generated by hand by different people; most of those 

entries had a number of arcs between 30 and 35. In addition to such 

entries, the fully connected and two highly connected initial topologies 

were used. For each entry 30 local minima were determined. 

The results are shown in Table 6.6.1. For each entry 

(identified by the degree of connection or by the initials of the 

designer) the following values are given: 

DCONT .  : cost of the best continuous solution (the cost is 
min 

evaluated on the continuous, a fitted, curves) 
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TABLE 6.6.1 

COST DDISC AND TRAFFIC LOAD p FOR 
VARIOUS 26 NODE ARPA TOPOLOGIES 

NAME DDISC P DCONT  . mm DCONT,. 
disc 

NA0 NA 

Fully conn. 89,580 1.05 82,583 86,164 325 61 

JAW 94,288 1,00 88,792 88,799 29 29 

JON 94,314 1.00 84,881 86,154 33 33 
MAX3                  ' 94,357 1.03 88,877 88,892 29 29 

High.conn.1 95,191 1.01 82,149 82,466 41 39 

KLE 95,621 1.04 89,485 90,529 31 31 

T0B1 96,017 1.03 89,134 89,134 29 29 

CAK 97,100 1.00 88,997 88,997 39 33 

High.conn.2 97,215 1.02 82,765 82,991 41 38 
MAG . 97,240 1.08 83,006 83,006 34 34 
BAN 98,055 1.02 90,331 91,427 33 33 

DGC2 98,478 1.03 87,320 87,930 33 33 
DPD 98,554 1.10 86,616 86,616 35 35 

JOP2 99,783 1.03 88,405 88,764 31 31 
TOM 99,992 1.06 87,513 87,574 38 35 

MAG2 100,207 1.00 86,748 87,019 30 30 
VCG 100,815 1.03 86,302 92,354 35 35 
H1IO 101,075 1.00 86,814 86,814 33 33 
KRIi 101,703 1.06 84,078 84,874 31 31 
BAN2 103,164 1,01 87,181 91,427 34 34 

MAX2 103,371 1.00 87,306 87,728 33 32 
ARI1 105,652 1.06 84,860 87,889 34 32 

MAX 106,840 1.00 89,270 97,396 35 3S 

LAM 108,540 1.10 90,134 90,134 51 42 
DUF 108,644 1.00 87,908 97,841 42 38 
JOP 112,669 1.00 88,941 91,602 34 34 
GAS 118,579 1.00 91,956 94,558 30 30 
KLE2 122,309 1.01 90,470 90,481 29 29 
DGCIP 133,251 1.03 89,591 89,591 29 29 
DGC 141,396 1.10 90,2^7 90,431 28 28 
NAM 150,968 1.10 92,991 92,991 31 30 
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DCONTj.  : cost o^ the continuous solution which generated the 

best discrete solution. 

DDISC   :  cost of the best feasible (i.e., P > 1 ) discrete 

solution 

p      : relative traffic level associated with the best 

discrete solution. 

NPt : number of arcs of the initial topology 

NA     : number of arcs of the final topology. 

The cc putation time for each entry was between 30 and 60 

seconds on an IBM 360/91. 

The results for the various entries are presented in Table 

6.6.1 in order of increasing DDISC. The best solution (DDISC = 89,580, 

p = 1,05) was obtained from a fully connected ini'ial topology; it has 

61 arcs (see Figure 6.6.2) and uses 9.6 and 19.2 kb capacities for the 

medium and long lines, and 50 kb capacities for the short lines (see 

the distribution of the capacities with respect to link lengths in 

Table 6.6.2).  The second best solution (DDISC = 94,288, p = 1.00) was 

obtained, on the other hand, from a low connected topology; it has 29 

arcs and uses prevalently 50 and 100 kb capacities on medium and long 

lines, and 230 kb on very short lines (see Figure 6.6.3). The other 

solutions have a number of arcs variable from 28 to 42 and a cost DDISC 

variable from 94,314 to 150,968. 

From the analysis of the results, j.t can be noticed that most 

of the entries produce continuous solutions with cost DCONT   between F mm 

8?,000 and 90,000; in particular, highly and medium onnected initial 
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TABU: 6.6.2 

DISTRIBUTION OF CAPACITIES VERSUS LINK LENGTHS 
FOR THi: 61 ARC TOPOLOGY OF FIGURE 6.6.2 

capacity 
[kb/sec] 

Link  length  (miles) 

< 100 100-500 500-1000 > 1000 

9^.6 0 3 8 20 

19.2 1 8 2 6 

50 11 2 0 0 

Note: each entry represents the number of links which have the 

specified capacity and are within the specified length 

range. 

topologies tend to produce better DCONT . than low connected topologies. 

Such behavior agrees with the results of Sections 6.4 and 6.5. However, 

it should be noticed that, for a given initial topology, the best dis- 

crete solution is not obtained from the minimum cost continuous solution 

(typically, DCONT,.  > DCONT . ); furthermore, there is almost no /r ' disc      mm ' 

correlation between DDISC and DCONT . . This fact dearly shows that mm 

the most critical step in the discrete capacities design, is the 

continuous-discrete transformation, rather than the determination of a 

good continuous solution: any effort should be directed therefore to 

the improvement of such transformation. 

In most of the cases, the difference between DDTSC and DCONT 

can be attributed to the presence of little utilized, high  cost capaci- 

ties: in such cases, some clever heuristics (e.g., reduction of the 

load level, rerouting of some commodities, etc) could be added to the 
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minimum fit discrete capacity assignment, in order to ensure a uniform 

utilization of all the channels and consequently reduce the difference 

between continuous and discrete cost.  In any case, the efficiency of a 

continuous-discrete transformation is very m'-h dependent on the data 

(number and distribution of the discrete capacity levels, existence of 

a good concave approxiration for the discrete costs, etc.); therefore 

no general considerations can be made. 

i 

It also should be noticed that the best topology is very highly 

conneci:ed and uses almost exclusively 9.6 and 19.2 kb capacities: this 

fact seems to indicate that, for the specific costs given in Table 

5.8.1, better results can be obtained with very highly connected (and 

certainly not very intuitive I), low capacitated topologies. 

Some of the results of Table 6.6.1 have been represented on a p 

versus D diagram in Figure 6.6.4a. An approximpte lower bound on D, 

for any p between 1.00 and 1.10, was obtained by joining with a 

straight line the lower bound D = 81,000 for p = 1.00, and the 

lower bound D = 87,000 for p = 1.10.  We notice that the excellent 

solution obtained from the fully connected topology (D = 89,580; 

p = 1.05) is only 6% from the lower bound; several solutions are avail- 

able in the range 10-15% from the lower bound. We conjecture that the 

use of some clever hueristics in the continuous-discrete transformation, 

the exploration of a broader sample of initial topologies (including 

very highly connected topologies) and a more accurate evaluation of p 

SuJi lower bounds were obtained with continuous, a fitted, cost curves 
(see Section 6.4). 

In order to keep the computation time within reasonable limits, the 
CUE algorithm allows only i0 FD iterations for the maximization of p . 
A more accurate, a postericii, evaluation of p is recommended for a 
selected set of solutions. 
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could reduce the gap and provide several solutions in the range 5-10% 

from the lower bound. 

Lower bounds, for a fitted, and a few good discrete solutions 

have been computed also for a larger range of traffic level 

(0.5 £ p < 1.10). The results are plotted in Figure 6.6.4b. Most of 

the solutions were obtained from the fully connected initial topology. 

The above results and considerations indicate that the CBE 

method is a v^lid tool for the topological design, in those cases in 

which the discrete costs can be reasonably approximated by continuous, 

concave costs, and the discrete capacities by continuous capacities. If 

these conditions are not verified, the method can still be used in order 

to obtain interesting lower bounds [see GERL 73]. 
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6.9      Conclusion 

The CBl: method is a topological design method applicable to 

multicommodity flow networks in which the objective, to be minimized, 

is (or can be reasonably approximated with) a continuous, concave 

function D(f) . 

The method is based on the key notion of vector of equivalent 

lengths £  (where I.  A 3D/9f. ), which indicates the direction of 

steepest flow deviation (see [GERL 73]). The method finds local minima 

of D(f) ; its impact on the network topology is due to the fact that 

* 
for the particular nature of D(f), the arcs with low utilization are 

gracefully eliminated, as the corresponding lengths become 00 . On the 

other hand, proper considerations, also based on i   ,  permit us to 

insert arcs, which are likely to reduce D^) . 

A peculiar feature of the CBH method is, therefore, the abili- 

ty to perform topological modifications by taking into account the com- 

plex interaction between cost and flow assignment fa  measure of such an 

interaction is given, as a first approximation, by 3D/9f. ).  In a 

sense, during the application of the CBE method, the flow itself designs 

the network topology, in the attempt to find the most convenient routes. 

On the other hand, branch X-change methods (see Section 6.3) 

perform topological modifications systematically (or on the basis of 

some reasonable considerations), with little or no attention to the 

cost-flow interaction. 

* 
For an efficient topological reduction we also require that: 

3D(f) 
lim -^— = oo , v i 
f.*0   i 

2 2 ? - 2 0 S 
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Clearly,  the CBE method cannot be applied to those cases  in 

which there is no meaningful notion of marginal  cost  (e.g.,    only one 

discrete capacity level;  pure set up costs):     in such cases, branch 

X-change methods  are the only alternative.    Also, branch X-change meth- 

ods  can be conveniently applied to problems where the evaluation of 

flow and cost  after each  topological  transformation is straightforward 

(e.g., tree structures   [FRAN 71A]). 

In this  chapter we discussed various  applications  and pointed 

out  cases  in which CSE performs  very well   (power  law cost  curves with 

a -   1  ) ;  cases  in which CBF. gives  reasonable results   (a -  0.6  ;  discrete 

problems with  a sufficient number of capacity  levels);  cases  for which 

the CBE method is not  adequate  (pure set up costs;    a -^ 0;  only r ic 

discrete  capacity  level). 

An interesting comparison betweei   CBE and branch  X-changc 

approach  is possible  if we analyze the method proposed by Frank et al. 

[FRAN  70]  for the design of minimum cost  computer network  topologies. 

The method operates topological  t rar'•form at ions with branch  X-change 

techniques.    After each transformation,  the  flow is  assigned to short- 

est  routes,  computed with  uniform link   lengths    £.   =  1, "V i   .     In 

order to provide  a more compact  representation of such a method,   let  us 

consider a fully connected topolog)     md let us  label the arcs  in such 

a topology from  1  to NA.    We  can now associate with  a specific topology 

a vector of equivalent   lengths i     ,  such that    Ä.   =   1   ,   if arc    i    bo- 

longs to the apology,  and    Ä,.   = 00    otherwise;  for example: 

X. (X f     L f , ,...,1, ,      . . .  ,     I J 

A topological  transformation can be, then,  represented as  a change of 
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some entries of Ä from 1  to ^ and vice versa. S;rnlarly, flows 

are routed on shortest paths computed according to i 

If we now apply the CBE method to the same problem, we have an 

equivalent lengths vector i    of the following form: 

Ä = (iy lv <*>,  «, ..., £k, <», ..., £NA) 

The vector i    now depends, not only on the topology, but also on cost 

and flow characteristics of the arcs. As for the topological trans- 

formations, arc i is automatically eliminated when £. becomes " ; 

on the other hand, if £. = » and cost-flow considerations indicate 
i 

that the insertion of arc i would reduce D(f) , length Ä.  is set to 

a proper value < «> . 

The first method can be therefore considered as an extreme 

simplification of the CBE method, in which i      carries no information 

about marginal costs. The method is certainly a good heuristic approach 

to problems hat have no notion of marginal cost; in particular, the 

method was applied by NAC [NAC 71&] to the design of minimum cost ARPA 

topologies, in which only 50 kb capacities were allowed, and produced 

very satisfactory results. Two solutions obtained by NAC for the 

familiar 26 nodes problem,  are shown in Figures 6.9.1a and 6.9.1b 

and are compared to the CBE discrete solutions in the p vs. D plot of 

Figure 6.6.^. 

* 
The costs shown in Table 5.8.1 were used. 
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